Marcos J. Bonich en conjunto con Daniel Carando y Martin Mazzitelli

IMAS, UBA-CONICET

8 de junio de 2023 XVII Congreso Dr. Antonio Monteiro

Caso constante

Teniendo un operador lineal y acotado $T: L^q(\Omega_2, \mu) \to L^p(\Omega_1, \nu)$, podemos considerar su extensión vectorial natural, dada por el operador

$$\tilde{T}: L^{q}(\ell^{r}) \to L^{p}(\ell^{r})$$

$$(f_{1}, f_{2}, \dots, f_{n}, \dots) \mapsto (T(f_{1}), T(f_{2}), \dots, T(f_{n}), \dots).$$

Caso constante

Teniendo un operador lineal y acotado $T: L^q(\Omega_2, \mu) \to L^p(\Omega_1, \nu)$, podemos considerar su extensión vectorial natural, dada por el operador

$$\tilde{T}: L^{q}(\ell^{r}) \to L^{p}(\ell^{r})
(f_{1}, f_{2}, \dots, f_{n}, \dots) \mapsto (T(f_{1}), T(f_{2}), \dots, T(f_{n}), \dots).$$

¿Es acotado?

$$\|\tilde{T}((f_n)_n)\|_{L^p(\ell^r)} \le C \|T\| \|(f_n)_n\|_{L^q(\ell^r)}, \qquad C \ge 1.$$

El espacio $L^p(\ell^r)$ contiene sucesiones $(g_n)_n$ tales que

$$\|(g_n)_n\|_{L^p(\ell^r)} = \left\|\left(\sum_n |g_n|^r\right)^{\frac{1}{r}}\right\|_{L^p(\Omega,\nu)} < \infty$$

El espacio $L^p(\ell^r)$ contiene sucesiones $(g_n)_n$ tales que

$$\left\| (g_n)_n \right\|_{L^p(\ell^r)} = \left\| \left(\sum_n |g_n|^r \right)^{\frac{1}{r}} \right\|_{L^p(\Omega,\nu)} < \infty$$

Entonces \tilde{T} es acotado si existe $C \geq 1$ tal que

$$\left\| \left(\sum_{n} |T(f_n)|^r \right)^{\frac{1}{r}} \right\|_{L^p(\Omega_1,\nu)} \leq C \|T\| \left\| \left(\sum_{n} |f_n|^r \right)^{\frac{1}{r}} \right\|_{L^q(\Omega_2,\mu)},$$

para toda sucesión $(f_n)_n \in L^q(\ell^r)$.

El espacio $L^p(\ell^r)$ contiene funciones $(g_n)_n$ tales que

$$\|(g_n)_n\|_{L^p(\ell^r)} = \left\|\left(\sum_n |g_n|^r\right)^{\frac{1}{r}}\right\|_{L^p(\Omega,\nu)} < \infty$$

Entonces \tilde{T} es acotado si existe $C \geq 1$ tal que

$$\left(\int_{\Omega_1}\left(\sum_n|T(f_n)|^r\right)^{\frac{\rho}{r}}d\nu\right)^{\frac{1}{\rho}}\leq C\|T\|\left(\int_{\Omega_2}\left(\sum_n|f_n|^r\right)^{\frac{q}{r}}d\mu\right)^{\frac{1}{q}},$$

para toda sucesión $(f_n)_n \in L^q(\ell^r)$.

La constante $k_{L^q(\Omega_2,\mu),L^p(\Omega_1,\nu)}(r)$ es el ínfimo de las constantes que verifican $\|\tilde{T}((f_n)_n)\|_{L^p(\ell^r)} \le C \|T\| \|(f_n)_n\|_{L^q(\ell^r)}$, para todas las $(f_n)_n \in L^q(\ell^r)$ y **todo** operador $T: L^q(\Omega_2,\mu) \to L^p(\Omega_1,\nu)$.

La constante $k_{L^q(\Omega_2,\mu),L^p(\Omega_1,\nu)}(r)$ es el ínfimo de las constantes que verifican $\left\| \tilde{T}((f_n)_n) \right\|_{L^p(\ell^r)} \le C \left\| T \right\| \left\| (f_n)_n \right\|_{L^q(\ell^r)}$, para todas las $(f_n)_n \in L^q(\ell^r)$ y **todo** operador $T: L^q(\Omega_2,\mu) \to L^p(\Omega_1,\nu)$. M. Junge demostró que si $L^q(\Omega_2,\mu)$ y $L^p(\Omega_1,\nu)$ tienen dimensión infinita, entonces las constantes no dependen de los espacios de medida. Esto nos permite definir

$$k_{q,p}(r) = k_{L^q(\Omega_2,\mu),L^p(\Omega_1,\nu)}(r),$$

con Ω_1 y Ω_2 cualquier par de espacios que no sean unión finita de átomos.

Marcinkiewicz y Zygmund ('39) probaron que dados cualesquiera $0 < p, q < \infty$, existe $C \ge 1$ tal que **todos** los operadores $T: L^q(\Omega_2, \mu) \to L^p(\Omega_1, \nu)$ verifican:

$$\left\| \left(\sum_{n} |T(f_n)|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\Omega_1,\nu)} \leq C \|T\| \left\| \left(\sum_{n} |f_n|^2 \right)^{\frac{1}{2}} \right\|_{L^q(\Omega_2,\mu)}.$$

Marcinkiewicz y Zygmund ('39) probaron que dados cualesquiera $0 < p, q < \infty$, existe $C \ge 1$ tal que **todos** los operadores $T: L^q(\Omega_2, \mu) \to L^p(\Omega_1, \nu)$ verifican:

$$\left\| \left(\sum_{n} |T(f_n)|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\Omega_1,\nu)} \leq C \|T\| \left\| \left(\sum_{n} |f_n|^2 \right)^{\frac{1}{2}} \right\|_{L^q(\Omega_2,\mu)}.$$

También probaron que si $0 < \max\{p,q\} < r < 2$, entonces todos los T tienen extensión ℓ^r -vectorial acotada:

$$\left\| \left(\sum_{n} |T(f_n)|^r \right)^{\frac{1}{r}} \right\|_{L^p(\Omega_1,\nu)} \leq C \|T\| \left\| \left(\sum_{n} |f_n|^r \right)^{\frac{1}{r}} \right\|_{L^q(\Omega_2,\mu)}.$$

Teorema (Defant - Junge ('98))

Sean $1 \leq p, q, r \leq \infty$ y

$$I(p,q) = \begin{cases} (q,2] & \text{si } p < q < 2 \\ [2,p) & \text{si } 2 < p < q \\ [\min\{2,q\}, \max\{2,p\}] & \text{en otro caso.} \end{cases}$$

Entonces $k_{q,p}(r) < \infty$ si y solo si $r \in I(p,q)$.

Caso variable

¿Qué ocurre si cambiamos los exponentes (constantes) p y q por exponentes variables \mathbf{p} y \mathbf{q} ?

Caso variable

¿Qué ocurre si cambiamos los exponentes (constantes) p y q por exponentes variables \mathbf{p} y \mathbf{q} ?

Definición (Exponente variable)

Sea (Ω, Σ, μ) un espacio de medida completo. Entonces denotamos por $\mathcal{P}(\Omega, \mu)$ el conjunto de las funciones μ -medibles y acotadas $\mathbf{p} \colon \Omega \to [1, \infty)$. Además notaremos

$$p_- = \mathop{\operatorname{ess \; inf}}_{x \in \Omega} \mathbf{p}(x) \quad \text{and} \quad p_+ = \mathop{\operatorname{ess \; sup}}_{x \in \Omega} \mathbf{p}(x).$$

Caso variable

¿Qué ocurre si cambiamos los exponentes (constantes) p y q por exponentes variables \mathbf{p} y \mathbf{q} ?

Definición (Exponente variable)

Sea (Ω, Σ, μ) un espacio de medida completo. Entonces denotamos por $\mathcal{P}(\Omega, \mu)$ el conjunto de las funciones μ -medibles y acotadas $\mathbf{p} \colon \Omega \to [1, \infty)$. Además notaremos

$$p_- = ess \inf_{x \in \Omega} \mathbf{p}(x)$$
 and $p_+ = ess \sup_{x \in \Omega} \mathbf{p}(x)$.

En esta charla consideraremos únicamente exponentes tales que $1 < p_- \le p_+ < \infty$ y llamaremos $\mathcal{P}_b(\Omega,\mu)$ al subconjunto de estos exponentes.

Definición

Sea (Ω, Σ, μ) un espacio de medida completo. Dada $\mathbf{p} \in \mathcal{P}(\Omega, \mu)$, definimos $L^{\mathbf{p}}(\Omega, \mu)$ como el conjunto de las funciones medibles $f: \Omega \longrightarrow \mathbb{K}$ tales que, para algún $\lambda > 0$

$$\int_{\Omega} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d\mu(x) < +\infty.$$

Definición

Sea (Ω, Σ, μ) un espacio de medida completo. Dada $\mathbf{p} \in \mathcal{P}(\Omega, \mu)$, definimos $L^{\mathbf{p}}(\Omega, \mu)$ como el conjunto de las funciones medibles $f: \Omega \longrightarrow \mathbb{K}$ tales que, para algún $\lambda > 0$

$$\int_{\Omega} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} d\mu(x) < +\infty.$$

Este conjunto se convierte en un espacio de Banach cuando se equipa con la norma de Luxemburgo

$$\|f\|_{L^{\mathbf{p}}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} d\mu(x) \leq 1 \right\}.$$

Podríamos decir que " $L^{\mathbf{p}}(\Omega, \mu)$ es un espacio de funciones que en distintas partes de Ω se parece a distintos espacios L^{p} ".

Podríamos decir que " $L^{\mathbf{p}}(\Omega, \mu)$ es un espacio de funciones que en distintas partes de Ω se parece a distintos espacios L^{p} ". Por ejemplo, si consideramos el exponente variable

$$\mathbf{p}(x) = \begin{cases} 1/2 & \text{si } 0 \le x \le 1 \\ 2 & \text{si } 1 < x < +\infty, \end{cases}$$

La función $\frac{1}{x}$ está en $L^{\mathbf{p}}(\mathbb{R}_{\geq 0})$.

Fijados (Ω_2, μ) y (Ω_1, ν) , pensemos en operadores

$$T: L^{\mathbf{q}}(\Omega_2, \mu) \to L^{\mathbf{p}}(\Omega_1, \nu).$$

i Existe $C \ge 1$ tal que **todos** ellos cumplan

$$\left\|\left(\sum_{n}|T(f_{n})|^{r}\right)^{\frac{1}{r}}\right\|_{L^{\mathbf{p}}(\Omega_{1},\nu)}\leq C\|T\|\left\|\left(\sum_{n}|f_{n}|^{r}\right)^{\frac{1}{r}}\right\|_{L^{\mathbf{q}}(\Omega_{2},\mu)}?$$

Fijados (Ω_2, μ) y (Ω_1, ν) , pensemos en operadores

$$T: L^{\mathbf{q}}(\Omega_2, \mu) \to L^{\mathbf{p}}(\Omega_1, \nu).$$

¿Existe $C \ge 1$ tal que **todos** ellos cumplan

$$\left\|\left(\sum_{n}|T(f_{n})|^{r}\right)^{\frac{1}{r}}\right\|_{L^{\mathbf{p}}(\Omega_{1},\nu)}\leq C\|T\|\left\|\left(\sum_{n}|f_{n}|^{r}\right)^{\frac{1}{r}}\right\|_{L^{\mathbf{q}}(\Omega_{2},\mu)}?$$

En caso de que exista, llamaremos $k_{L^{\mathbf{q}}(\Omega_2,\mu),L^{\mathbf{p}}(\Omega_1,\nu)}(r)$ al ínfimo de ellas y en caso contrario diremos que es infinito.

Fijados (Ω_2, μ) y (Ω_1, ν) , pensemos en operadores

$$T: L^{\mathbf{q}}(\Omega_2, \mu) \to L^{\mathbf{p}}(\Omega_1, \nu).$$

¿Existe $C \ge 1$ tal que **todos** ellos cumplan

$$\left\|\left(\sum_{n}|T(f_{n})|^{r}\right)^{\frac{1}{r}}\right\|_{L^{\mathbf{p}}(\Omega_{1},\nu)}\leq C\|T\|\left\|\left(\sum_{n}|f_{n}|^{r}\right)^{\frac{1}{r}}\right\|_{L^{\mathbf{q}}(\Omega_{2},\mu)}?$$

En caso de que exista, llamaremos $k_{L^{\mathbf{q}}(\Omega_2,\mu),L^{\mathbf{p}}(\Omega_1,\nu)}(r)$ al ínfimo de ellas y en caso contrario diremos que es infinito.

Las constantes dependen de los espacios de medida (ya que **p** y **q** dependen de éstos), pero cuando no haya ambigüedad sobre éstos, escribiremos directamente $k_{\mathbf{q},\mathbf{p}}(r)$ en lugar de $k_{\mathbf{L}^{\mathbf{q}}(\Omega_{2},\mu),L^{\mathbf{p}}(\Omega_{1},\nu)}(r)$.

Lema (B. - Carando - Mazzitelli)

Sean $\mathbf{p}_1, \mathbf{p}_2 \in \mathcal{P}_b(\Omega_1, \nu)$, $\mathbf{q}_1, \mathbf{q}_2 \in \mathcal{P}_b(\Omega_2, \mu)$, $1 \le r < \infty$ y supongamos que

$$1 < \mathbf{p}_2 \le \mathbf{p}_1 < \infty \quad y \quad 1 < \mathbf{q}_1 \le \mathbf{q}_2 < \infty,$$

en casi todo punto. Entonces, $k_{\mathbf{q}_1,\mathbf{p}_1}(r) \lesssim k_{\mathbf{q}_2,\mathbf{p}_2}(r)$.

Lema (B. - Carando - Mazzitelli)

Sean $\mathbf{p}_1, \mathbf{p}_2 \in \mathcal{P}_b(\Omega_1, \nu)$, $\mathbf{q}_1, \mathbf{q}_2 \in \mathcal{P}_b(\Omega_2, \mu)$, $1 \le r < \infty$ y supongamos que

$$1 < \mathbf{p}_2 \le \mathbf{p}_1 < \infty$$
 y $1 < \mathbf{q}_1 \le \mathbf{q}_2 < \infty$,

en casi todo punto. Entonces, $k_{\mathbf{q}_1,\mathbf{p}_1}(r) \lesssim k_{\mathbf{q}_2,\mathbf{p}_2}(r)$.

Básicamente, $k_{\mathbf{q},\mathbf{p}}(r)$ "crece" si **q** crece y **p** decrece.

Lema (B. - Carando - Mazzitelli)

Sean $\mathbf{p}_1, \mathbf{p}_2 \in \mathcal{P}_b(\Omega_1, \nu)$, $\mathbf{q}_1, \mathbf{q}_2 \in \mathcal{P}_b(\Omega_2, \mu)$, $1 \le r < \infty$ y supongamos que

$$1 < \mathbf{p}_2 \le \mathbf{p}_1 < \infty$$
 y $1 < \mathbf{q}_1 \le \mathbf{q}_2 < \infty$,

en casi todo punto. Entonces, $k_{\mathbf{q}_1,\mathbf{p}_1}(r) \lesssim k_{\mathbf{q}_2,\mathbf{p}_2}(r)$.

Básicamente, $k_{\mathbf{q},\mathbf{p}}(r)$ "crece" si \mathbf{q} crece y \mathbf{p} decrece. La demostración de dichas propiedades de crecimiento y decrecimiento es una adaptación de las mismas propiedades en el caso en que p y q son constantes.

Teorema (B. - Carando - Mazzitelli)

Sean $\mathbf{p} \in \mathcal{P}_b(\Omega_1, \nu)$, $\mathbf{q} \in \mathcal{P}_b(\Omega_2, \mu)$ donde (Ω_1, ν) y (Ω_2, μ) son espacios de medida no atómicos, $1 < r < \infty$ y

$$I(p,q) = \begin{cases} (q,2] & \text{if } p < q < 2, \\ [2,p) & \text{if } 2 < p < q, \\ [\min\{2,q\}, \max\{2,p\}] & \text{en otro caso.} \end{cases}$$

Entonces $k_{\mathbf{q},\mathbf{p}}(r) < \infty$ si y sólo si $r \in I(p_-, q_+)$.

Dem. (idea):

La vuelta del teorema se consigue por el teorema de Defant-Junge y por las propiedades de crecimiento y decrecimiento:

$$k_{\mathbf{q},\mathbf{p}}(r) \lesssim k_{q_+,p_-}(r) < \infty.$$

Si
$$k_{\mathbf{q},\mathbf{p}}(r) < \infty$$
 entonces $r \in I(p_-,q_+)$.

Para la ida tengamos en cuenta algunas propiedades. La constante se reduce en subconjuntos de Ω_1 y Ω_2 . En particular, si consideramos los subconjuntos

$$\Omega_1^{\varepsilon} = \left\{ x \in \Omega_1 | p(x) < p_- + \epsilon \right\},
\Omega_2^{\varepsilon} = \left\{ x \in \Omega_2 | q(x) > q_+ - \epsilon \right\},$$

tendremos que

$$k_{L^{\mathbf{q}}(\Omega_{2}^{\varepsilon},\mu),L^{\mathbf{p}}(\Omega_{1}^{\varepsilon},\nu)}(r)\lesssim k_{L^{\mathbf{q}}(\Omega_{2},\mu),L^{\mathbf{p}}(\Omega_{1},\nu)}(r).$$

Si $k_{\mathbf{q},\mathbf{p}}(r) < \infty$ entonces $r \in I(p_-,q_+)$.

Como los espacios de medida son no atómicos, $L^{q_+-\varepsilon}(\Omega_2^\varepsilon)$ y $L^{p_-+\varepsilon}(\Omega_1^\varepsilon)$ tienen dimensión infinita. Luego, las constantes son independientes de los espacios de medida. En particular

$$k_{q_+-\varepsilon,p_-+\varepsilon}(r)=k_{L^{q_+-\varepsilon}(\Omega_2^\varepsilon,\mu),L^{p_-+\varepsilon}(\Omega_1^\varepsilon,\nu)}(r).$$

Si
$$k_{\mathbf{q},\mathbf{p}}(r) < \infty$$
 entonces $r \in I(p_-, q_+)$.

Como los espacios de medida son no atómicos, $L^{q_+-\varepsilon}(\Omega_2^\varepsilon)$ y $L^{p_-+\varepsilon}(\Omega_1^\varepsilon)$ tienen dimensión infinita. Luego, las constantes son independientes de los espacios de medida. En particular

$$k_{q_+-\varepsilon,p_-+\varepsilon}(r)=k_{L^{q_+-\varepsilon}(\Omega_2^\varepsilon,\mu),L^{p_-+\varepsilon}(\Omega_1^\varepsilon,\nu)}(r).$$

Con estas dos propiedades y las propiedades de crecimiento y decrecimiento $(q(x) > q_+ - \varepsilon \text{ y } p(x) < p_- + \varepsilon)$ tendremos

$$\begin{array}{lcl} k_{q_{+}-\varepsilon,p_{-}+\varepsilon}(r) & = & k_{L^{q_{+}-\varepsilon}(\Omega_{2}^{\varepsilon},\mu),L^{p_{-}+\varepsilon}(\Omega_{1}^{\varepsilon},\nu)}(r) \\ & \lesssim & k_{L^{q}(\Omega_{2}^{\varepsilon},\mu),L^{p}(\Omega_{1}^{\varepsilon},\nu)}(r) \\ & \lesssim & k_{L^{q}(\Omega_{2},\mu),L^{p}(\Omega_{1},\nu)}(r) \\ & < & \infty. \end{array}$$

Si $k_{\mathbf{q},\mathbf{p}}(r) < \infty$ entonces $r \in I(p_-,q_+)$.

Por lo tanto, si $k_{\mathbf{q},\mathbf{p}}(r) < \infty$, entonces $k_{q_+-\varepsilon,p_-+\varepsilon}(r) < \infty$ para todo $\varepsilon > 0$, lo cual implica (por el caso constante) que $r \in \bigcap_{\varepsilon > 0} I(p_- + \varepsilon, q_+ - \varepsilon)$.

El resto de la prueba es considerar los distintos rangos de valores que pueden tomar p_- y q_+ para finalmente verificar que

$$\bigcap_{\varepsilon > 0} I(p_- + \varepsilon, q_+ - \varepsilon) = I(p_-, q_+).$$

En su libro, J. Garcia Cuerva y J.L. Rubio de Francia dicen "...almost all the information that one may wish concerning the boundedness properties of a linear operator, is contained in the weighted- L^2 inequalities that this operator satisfies...". En este sentido, escriben el siguiente resultado

Caso variable

Aplicación

En su libro, J. Garcia Cuerva y J.L. Rubio de Francia dicen "...almost all the information that one may wish concerning the boundedness properties of a linear operator, is contained in the weighted- L^2 inequalities that this operator satisfies...". En este sentido, escriben el siguiente resultado

Corolario

Sean $1 y <math>1/\alpha = |1-2/p|$. Un operador lineal $T: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ es acotado si y solo si, para cada peso $u \in L^\alpha_+(\mathbb{R}^n)$ podemos encontrar un peso w tal que: $u(x) \le w(x)$, $\|w\|_\alpha \le 2 \|u\|_\alpha$ y T es acotado en $L^2_{w^\sigma}(\mathbb{R}^n)$ (donde $\sigma = 1$ si $2 \le p$ y $\sigma = -1$ si p < 2).

Aplicación

En su libro, J. Garcia Cuerva y J.L. Rubio de Francia dicen "...almost all the information that one may wish concerning the boundedness properties of a linear operator, is contained in the weighted- L^2 inequalities that this operator satisfies...". En este sentido, escriben el siguiente resultado

Corolario

Sean $1 y <math>1/\alpha = |1-2/p|$. Un operador lineal $T: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ es acotado si y solo si, para cada peso $u \in L^\alpha_+(\mathbb{R}^n)$ podemos encontrar un peso w tal que: $u(x) \le w(x)$, $\|w\|_\alpha \le 2 \|u\|_\alpha$ y T es acotado en $L^2_{w^\sigma}(\mathbb{R}^n)$ (donde $\sigma = 1$ si $2 \le p$ y $\sigma = -1$ si p < 2).

Luego, dicen "We invite the reader to search for more general formulations of our last corollary, involving, for instance, weighted inequalities in $L^p(\mathbb{R}^n)$ for the operator T."

Usando nuestro teorema podemos decir que, para ciertos rangos de r, la información sobre la acotación de $T:L^{\mathbf{q}}(\Omega_2,\mu)\to L^{\mathbf{p}}(\Omega_1,\nu)$ está contenida en las desigualdades L^r -pesadas que satisface T:

Usando nuestro teorema podemos decir que, para ciertos rangos de r, la información sobre la acotación de $T:L^{\mathbf{q}}(\Omega_2,\mu)\to L^{\mathbf{p}}(\Omega_1,\nu)$ está contenida en las desigualdades L^r -pesadas que satisface T:

Corolario

- Si $2 \leq r < \min\{p_-, q_-\}$ entonces $T: L^{\mathbf{q}}(\Omega_2, \mu) \to L^{\mathbf{p}}(\Omega_1, \nu)$ es acotado si y solo si, dado $u \in L^{\alpha(\cdot)}_+(\Omega_1, \nu)$, existe $U \in L^{\beta(\cdot)}_+(\Omega_2, \mu)$ tal que $\|U\|_{\beta(\cdot)} \leq \|u\|_{\alpha}$ y $T: L^r(\Omega_2, Ud\mu) \to L^r(\Omega_1, ud\nu)$ es acotado.
- Si máx $\{p_+, q_+\} < r \le 2$ entonces $T: L^{\mathbf{q}}(\Omega_2, \mu) \to L^{\mathbf{p}}(\Omega_1, \nu)$ es acotado si y solo si, dado $u \in L_+^{\beta(\cdot)}(\Omega_2, \mu)$, existe $U \in L_+^{\beta(\cdot)}(\Omega_1, \nu)$ tal que $\|U\|_{\alpha(\cdot)} \le \|u\|_{\beta}$ y $T: L^r(\Omega_2, u^{-1}d\mu) \to L^r(\Omega_1, U^{-1}d\nu)$ es acotado.

¡Gracias!